

Product Manual Cat. No: #9201

HiDi® Taq DNA Polymerase

Description

HiDi® Taq DNA polymerase is a highly selective DNA polymerase variant, specially evolved for all assays in which **Hi**gh **Di**scrimination is required, for instance in allele-specific PCRs, primer extensions or methylation-specific PCRs.

HiDi® Taq DNA polymerase efficiently amplifies from primers that are matched at the 3'-end and discriminates primers that are mismatched. An aptamer-based hot-start formulation of the HiDi® Taq DNA polymerase prevents false amplification. Temperatures above 50–55°C cause the aptamer's secondary structure to melt and will set-free the polymerase.

HiDi® Taq variant has a 5'-3'-nuclease activity and therefore can be used for hydrolysis probe-based real-time PCRs.

Applications include SNP-detection by allele-specific amplification (ASA) / allele specific PCR, genotyping and genomic profiling, real-time PCR with fluorescence-based hydrolysis probes and real-time multiplex detection PCR.

Kit components

Component	S pack*	M pack*
HiDi® Taq DNA Polymerase	1 x 50 µL	1 x 200 μL
10x HiDi® reaction buffer	1 x 1.25 mL	2 x 1.25 mL

^{*}Other pack sizes, bulk orders and customization are available upon request.

Storage and shipment

Transport with cool packs. The reagents should be stored at -20°C upon arrival. The reagents are stable until the expiration date if stored correctly.

Reaction Master Mix set-up

The recommended master mix set-up for a 50 μ L reaction volume is shown in the table below.

Reagent	Volume (μL)	Final concentration
HiDi® Taq DNA Polymerase (5 U/µL)	0.5	2.5 U/rxn
HiDi® buffer (10x)	5	1x
∞Forward primer (10 µM)	1	0.2 μM (0.05–1 μM)
∞Reverse primer (10 µM)	1	0.2 μM (0.05–1 μM)
dNTPs (2 mM)	5	200 μΜ
Template/Sample extract	x	<1000 ng* DNA
Nuclease-free water	Up to 50 μL final volume	

Keep all components on ice.

Spin down and mix all solutions carefully before use.

∞Primers should ideally have a GC content of 40–60% typically.

*Suggested template concentration should be about 1 ng – 1000 ng (genomic DNA) or 1 pg – 1 ng (plasmid/viral DNA) per reaction.

Instrument and program set-up

Cycles	Steps	Temperature	Time
1	Initial denaturation	95°C	2 min
25–40	Denaturation	95°C	15 sec
	Annealing*	54-72°C	30 sec
	Extension	72°C	30 sec /250 bp

^{*}Typically, the annealing temperature is about 3–5°C below the calculated melting temperature of the primers used.

Product Manual Cat. No: #9201

Technical information and support

HiDi® 10x buffer is optimized for short amplicon length (about 60–200 bp). In case longer amplicons (>500 bp) the addition of magnesium (+ 0.5–1.5 mM) might be needed.

HiDi® Taq DNA polymerase has a 5'-3'-nuclease activity and therefore can be used for hydrolysis probebased assays.

Please note that HiDi® Taq DNA polymerase is not well suited for real-time PCRs using a real-time dye such as SYBR Green. For those applications, HiDi® DNA polymerase (#9001) is recommended.

For technical enquiries or assay development support, please contact us via e-mail at: mdx@medixbiochemica.com.

Additional information and technical resources are available on our website at: info.medixbiochemica.com/resources.